COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course	4606-ES-00000G	H-0160	Name of the course		Pol	lish	Zastosowania inżynierii materiałowej w diagnostyce urządzeń przemysłowych		
course			course		Eng	glich	Applications of materials science in the diagnostics of industrial devices		
Type of the course	Specialty lecture								
Course coordinator	Dr hab. inż. Krzys prof. PW	towski,	Course teacher		Dr inż. Łukasz Sarniak				
Implementing unit	1	Faculty of Materials Science and Engineering		ic discipline / ciplines*	Materials Engineering, N		ng, Mechanical Engine	Mechanical Engineering	
Level of education	Doctoral stu	Doctoral studies		Semester		spring			
Language of the course	English								
Type of assessment	Pass for assessment - final project with presentation		Number of hours in a semester			15	ECTS credits	1	
Minimum number of participants	12	Max		Maximum number of participants			Available for studen (BSc, MSc)	Yes/ No	
Type of classes		Lecture		Auditory classes		Project classes	Laboratory	Seminar	
Number of hours	in a week	2		-		-	-	-	
	in a semester	15		-		-	-	-	
Estimated date for the implementation of the course	day of the week	Thurse		day	Teaching		Building	Room number	
	hours	Between 10.00 and 16.00				location			

^{*} does not apply to the Researcher's Workshop

1. Prerequisites

None

2. Course objectives

The goal of the education is to obtain by PhD students the ability to use their knowledge in the field of material engineering to analyze the technical condition of industrial equipment and facilities, in the context of extending their life and reducing the risk of failures related to material degradation. It is connected, among others, with the ability to select the appropriate testing methodology and analysis of the results of the conducted research, and to formulate appropriate conclusions and recommendations for owners of industrial installations. The aim of education is also to familiarize students with the possibilities of available research methods (destructive and non-destructive), taking into account modern and advanced methods, current research trends and standards.

3. Course content (separate for each type of classes)

Lecture

The aim of education in this subject is to obtain by Ph.D. students the ability to use their knowledge in material science and engineering, analyze the technical condition of industrial equipment and facilities in the context of extending their life, and reducing the risk of failures related to material degradation. In this context, students will acquire the ability to select the appropriate testing methodology, analyze the results and formulate appropriate conclusions and recommendations for owners of industrial installations. The training aims to familiarize students with the possibilities of available testing methods (both destructive and non-destructive), including modern and advanced methods, taking into account current standards and testing trends.

During the course, doctoral students will also learn the possibilities of the available destructive and non-destructive testing methods in technical diagnostics and current trends in their application and the concept of RBI processes and operational control programs.

Warsaw University of Technology

Students will have the opportunity to verify and consolidate the knowledge obtained during the course during the final project preparation. The task of the project will be to develop guidelines for the research methodology of the selected industrial facility/installation, taking into account its operating parameters, appropriate acceptance criteria, and current standards. Presentations will be prepared in small subgroups, and their results will be jointly presented and discussed at the end of course.

- **W1**. Lecture 1. Introduction to technical diagnostics and introduction and basics of non-destructive testing methods (2 h)
- W2. Lecture 2. Selection of research methodology and operational control programs and RBI (2 h)
- **W3**. Lecture 3. Non-destructive testing surface methods and non-destructive testing volumetric methods: part I (2h)
- W4. Lecture 4. Non-destructive testing volumetric methods: part II (2 h)
- **W5**. Lecture 5. Destructive testing in industrial practice and modern research methods. Analysis of the results of non-destructive testing (2 h)
- W6. Lecture 6. Acceptance criteria and normative documents (2 h)
- W7. Project presentation and discussion (2 h)
- W8. Project presentation and discussion (1 h)

Laboratory

1 Learnin	outcomes				
4. Learning outcomes					
Type of learning outcomes	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*		
	Knowledge				
K01	Knowledge of the basics and objectives of technical diagnostics;	SD_W1, SD_W2, SD_W3	project evaluation		
K02	Knowledge of the possibilities of available methods of destructive and non-destructive testing and current trends in their application;	SD_W1, SD_W2, SD_W3	project evaluation		
К03	Knowledge of RBI process concepts and operational control programs;	SD_W1, SD_W2, SD_W3	project evaluation		
	Skills				
S01	Ability to use knowledge in the field of materials engineering to analyze the technical condition of equipment and industrial facilities;	SD_U1, SD_U2, SD_U3, SD_U4	project evaluation		
S02	Ability to select a research methodology depending on the diagnosed industrial object;	SD_U1, SD_U2, SD_U3, SD_U4	project evaluation		
S03	Ability to analyze the results of industrial research and formulate relevant conclusions and recommendations;	SD_U1, SD_U2, SD_U3, SD_U4	project evaluation		
S04	Ability to select appropriate acceptance criteria based on current normative documents;	SD_U1, SD_U2, SD_U3, SD_U4	project evaluation		
S05	Improving teamwork skills;	SD_U7	project evaluation		

Warsaw University of Technology

	Social competences					
SC01	Presentation of own concepts, analyses and guidelines and the ability to conduct an informed discussion in this area.	SD_K2	project evaluation			

^{*}Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

Final project with a presentation - development of guidelines for the testing methodology of a selected industrial facility / installation, taking into account its operating parameters, appropriate acceptance criteria and current standards.

6. Literature

Primary references:

- [1] API 510 Pressure Vessel Inspection Code: Maintenance Inspection, Rating, Repair, and Alteration
- [2] ASME Boiler and Pressure Vessel Code V: Nondestructive Examination
- [3] PED 2014/68/EU: Pressure Equipment Directive
- [4] ISO/IEC 17025 Standard: General requirements for the competence of testing and calibration laboratories
- [5] EN ISO 9712 Standard: Non-destructive testing Qualification and certification of NDT personnel

Secondary references:

[1] Normative documents concerning the application of particular testing methods

7. PhD student's workload necessary to achieve the learning outcomes**			
No.	Description	Number of hours	
1	Hours of scheduled instruction given by the academic teacher in the classroom	15	
2	Hours of consultations with the academic teacher, exams, tests, etc.	2	
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	5	
4	Amount of time devoted to the preparation for exams, test, assessments	5	
	27		
	ECTS credits	1	

^{** 1} ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)

8. Additional information	
Number of ECTS credits for classes requiring direct participation of academic teachers	1
Number of ECTS credits earned by a student in a practical course	0