COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course		4606-ES-00000l	FH-0235	Nan	ne of the course	Polish English	Optymalne projektov inżynierskich. Sformułowanie teore numeryczne Optimum design of er structures. Theoretical formulati methods	tyczne i metody ngineering
Type of the course		specialized						
Course coordinator		prof. dr hab. inż. Tomasz Lewiński						
Implementing unit		Faculty of Civil Engineering			ntific discipline / disciplines*	Civil Engineering, Geodesy and Transport / Mechanical engineering		
Level of education	rel of education Doctoral stud		es Semester Winter					
Language of the cou	Language of the course English							
Type of assessment:		Credit with a grade		N	umber of hours in a semester	60	ECTS credits	4
Minimum number of participants		10		N	laximum number of participants	20	Available for studen (BSc, MSc)	ts Yes/ No
Type of classe			Lecture		Auditory classes	Project classes	Laboratory	Seminar
Number of hours		in a week 2			1	0	1	0
	in	a semester	30		15		15	

^{*} does not apply to the Researcher's Workshop

1. Prerequisites

A comprehension of the linear theory of elasticity and the theory of plates and shells.

2. Course objectives

The course is aimed at teaching the contemporary methods of optimum design of elastic structures to minimize their compliance or their weight.

3. Course content (separate for each type of classes)

Lecture

Classification of problems and methods of optimization. The Karush-Kuhn-Tucker optimality conditions. The primal and dual problems. Introduction to linear programming: formulation and numerical methods. The problems of non-linear programming- the solution methods.

The discretized approach towards structural mechanics. Variational formulations of statics of elastic structures. The FMD (free material design) method for minimizing the compliance- for optimizing the full anisotropy, isotropy and cubic symmetry. The numerical methods in FMD. The multiple load problems- construction of the Pareto front. Introduction towards global optimization methods, e.g. the Strongin-Sergeev approach and selected genetic algorithms.

Laboratory

Designing bar structures for minimum weight (elastic and plastic approach). Sizing, shape and topology optimization. Introduction to Michell's structures. The ground structure and growth methods. Single or multiple load case. Computational project of shape optimization of a plane truss.

4. Learning outcomes						
	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*			
Knowledge						

Warsaw University of Technology

K01	Graduates gain knowledge in the optimization of engineering structures	SD_W3	Project evaluation, oral exam				
	Skills						
S01	Graduates can formulate and solve structural optimization problems	SD_U1	Project evaluation, oral exam				
Social competences							
SC01	The graduate is ready to think and act creatively and entrepreneurially	SD_K4	Observation of the student's work during the execution of the project				

^{*}Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

Preparing the projects, evaluation of the project, oral exam.

6. Literature

Basic literature:

- [1] M. A. Bhatti, Practical optimization methods with Mathematica and applications. Springer, New York 2000.
- [2] T. Lewiński, T. Sokół, C. Graczykowski, Michell Structures, Springer International Publishing AG, Cham, Switzerland 2019, str 569.

Additional literature:

- [1] M. S. Bazaraa, H. D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Algorithms. Wiley, 2002.
- [2] G.I.N. Rozvany, T. Lewiński (Eds.), Topology Optimization in Structural and Continuum Mechanics. CISM International Centre for Mechanical Sciences 549. Courses and Lectures. Springer Wien Heidelberg New York Dordrecht London, CISM, Udine 2014. 471 pp.

7. PhD	7. PhD student's workload necessary to achieve the learning outcomes**			
No.	Description	Number of hours		
1	Hours of scheduled instruction given by the academic teacher in the classroom	60		
2	Hours of consultations with the academic teacher, exams, tests, etc.	10		
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	30		
4	Amount of time devoted to the preparation for exams, test, assessments	10		
	110			
	ECTS credits	4		

^{** 1} ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)