COURSE OFFERED IN THE DOCTORAL SCHOOL

Code of the course		4606-ES-00DEGKL-0023		Name of the course	Polish	Inżynieria Molekularna		
					English	Molecular Engineering		
Type of the cou	rse	Specialty subjects						
Course coordina	tor	Prof. dr hab. inż. Tomasz Ciach						
Implementing unit		•	hemical and ngineering	Scientific discipline / disciplines*	: / Chemical Engineering, Chemical Sciences, Materials Engineering, Biomedical Engineering, Physical Sciences			
Level of education		Education of doctoral students		Semester	Winter semester			
Language of the course		English						
Type of assessment:		Credit		Number of hours in a semester	15	ECTS credits		1
Minimum num of participan			4	Maximum number of participants	30	Available for students (BSc, MSc)		Yes
Type of classes			Lecture	Auditory classes	Project classes	Laboratory	Se	eminar
Number of hours	in a	a week	3	-	-	-		-
Number of flours	in a s	emester	15	-	-	-		-

^{*} does not apply to the Researcher's Workshop-

1. Prerequisites

Completed subject - general chemistry, organic chemistry, Knowledge in the field of organic chemistry, biochemistry, material engineering

2. Course objectives

The aim of the proposed series of lectures is to familiarize PhD students with topics of broadly understood molecular engineering. It is an interdisciplinary look at the synthesis, modification, but mostly on the applicability of organic chemistry and intermolecular interactions in the field of nanotechnology. A series of lectures will describe the type of chemical bonds, guest-host, acceptor-donor and hydrogen interactions, as well as their applicability in the process of nanomaterials development. The scope of conjugation of biologically active molecules (peptides, sugars, DNA) leading to the production of bio-materials will be discussed in detail. The main goal of the lecture is to equip PhD students with the knowledge necessary to carry out material modification (polymers, glass, silicone) by its conjugation with biologically active compounds (peptides, DNA, drugs, fluorophores). By completing the lecture in the form of presentations, doctoral students will be equipped with soft skills so necessary in scientific work.

3. Course content (separate for each type of classes)

Lecture

- W1. Lecture 1. Introduction to molecular engineering, molecular interactions
- W2. Lecture 2. Molecular building blocks
- W3. Lecture 3. Host-Guest interactions
- W4. Lecture 4. Bioconjugation: modification of materials with bioactive molecules
- W5. Lecture 5. Surface modification
- W6. Lecture 6. PhD's review session - exam session

Laboratory

4. Learning outcomes					
	Learning outcomes description	Reference to the learning outcomes of the WUT DS	Learning outcomes verification methods*		

Warsaw University of Technology

	Knowledge		
K02	He has established knowledge necessary for the advanced materials preparation processes, i.e. for preparing functional surfaces, polymers, bioconjugated materials	SD_W2 (P8S_WG)	Presentation evaluation; evaluation of activity during the class
К03	He has knowledge of new trends and the most important achievements in the field of nanotechnology and in functional-materials preparation including sensors, functional materials, functional surfaces	SD_W3 (P8S_WG)	Presentation evaluation; evaluation of activity during the class
	Skills		
S01	He can get information from the literature, data bases, and other sources in order to comply with projects concerning functional materials engineering including sensors, functional materials, and functional surfaces.	SD_U1 (P8S_UW)	Presentation evaluation; evaluation of activity during the class
S02	He can prepare and handle a project concerning the design and engineering of functional materials using advanced chemistry, and molecular engineering and test the developed products.	SD_U4 (P8S_UK)	Presentation evaluation; evaluation of activity during the class
S03	He can, based on the acquired knowledge of molecular engineering and molecules function design functional material suitable for market needs	SD_U6 (P8S_UK)	Presentation evaluation; evaluation of activity during the class
	Social competences		
SC01	He can use advanced molecular engineering knowledge in the issues of chemistry, material, and bio-material engineering.	SD_K4 (P8S_KO)	Presentation evaluation; evaluation of activity during the class

^{*}Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

Lecture attendance - 1 pt/lecture; Final presentation 5 pts. Pass of 8 pts upwards.

6. Literature

Basic literature:

- [1] Nanochemistry: A Chemical Approach to Nanomaterials, Geoffrey A Ozin, André Arsenault, Ludovico Cademartiri, RSC Publishing 2008, Print ISBN 978-1-84755-895-4
- [2] Organic Synthesis and Molecular Engineering, Mogens Brøndsted Nielsen, 2013, ISBN: 978-1-118-73648-7
- [3] Bioconjugate Techniques 3rd Edition, Greg Hermanson, Academic Press 2013, Print ISBN: 9780123822390 Supplementary literature:
- [1] Supramolecular Chemistry, Second Edition, Jonathan W. Steed, Jerry L. Atwood, John Wiley & Sons, Ltd 2009, Print ISBN:9780470512333
- [2] Intermolecular and Surface Forces, Jacob N. Israelachvili, 2011, ISBN: 978-0-12-375182-9
- [3] Fundamentals of Soft Matter Science, Linda S. Hirst, 2012, ISBN: 978-1439827758

Warsaw University of Technology

7. PhD student's workload necessary to achieve the learning outcomes**		
No.	Description	Number of hours
1	Hours of scheduled instruction given by the academic teacher in the classroom	15
2	Hours of consultations with the academic teacher, exams, tests, etc.	1
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	5
4	Amount of time devoted to the preparation for exams, test, assessments	10
	Total number of hours	31
	1	

^{** 1} ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)